P1128 – Closed Loop Fueling Not Achieved Bank 1 (Chrysler, Dodge, Jeep)

Reinier

By Reinier (Contact Me)
Last Updated 2020-12-20
Automobile Repair Shop Owner

CodeFault LocationProbable Cause
P1128 P1128 – Closed Loop Fueling Not Achieved Bank 1 (Chrysler, Dodge, Jeep)
(Buy Part On Amazon)

We recommend Torque Pro

Manufacturer Specific Definitions for P1128

MakeFault Location
AcuraManifold absolute pressure (MAP) sensor - pressure lower than expected
AudiLong term fuel trim, entire speed/load range, Bank 1 - system too lean
ChryslerClosed loop fuel control not achieved -bank 1
CitroenUpstream Heated O2 Sensors Swapped
DaewooIdle Ratio (P /Load) - Lean
DaihatsuThrottle valve stuck£-dirty block
DodgeHeated oxygen sensor (H02S) 1, bank 1 signal error
FordFront O2 Sensor Connectors Swapped
HondaMAP sensor – signal lower than expected
HyundaiFuel System Lean-Part Load
InfinitiThrottle motor – short circuit
IsuzuManifold absolute pressure (MAP) sensor - pressure lower than expected
JeepClosed loop fuel control not achieved -bank 1
KenworthP1128 - Air temp too high
LamborghiniLong term fuel trim multiplicative air system high
Land RoverHeated oxygen sensor (H02S), upstream – transposed
LexusThrottle actuator control (TAC) lock- malfunction
LincolnHeated oxygen sensor (H02S) 1, bank 11 bank 2 -interchanged
MazdaHeated oxygen sensor (H02S) -front – bank 1/bank 2 sensors transposed
MercuryHeated oxygen sensor (H02S) 1, bank 1/ bank 2 interchanged
MitsubishiClosed Loop Fueling Not Achieved Bank 1
NissanThrottle valve position motor – short circuit
PeterbiltP1128 - Air temp too high
PeugeotUpstream Heated O2 Sensors Swapped
PorscheOxygen Sensing
RamHeated oxygen sensor (H02S) 1, bank 1 signal error
SaturnManifold absolute pressure (MAP) sensor signallow
ToyotaThrottle actuator control (TAC) lock - malfunction
VolkswagenLong term fuel trim, system too lean

What Does Code P1128 Mean?

OBD II fault code P1128 is a manufacturer-specific trouble code that is defined by carmakers Chrysler, Dodge, and Jeep* as “Closed Loop Fueling Not Achieved- Bank 1”. On these applications, this code sets when the PCM (Powertrain Control Module) detects a condition in which the fuel management system remains in open-loop operation for a period that exceeds a maximum allowable threshold. Note that “Bank 1” on V-type engines refers to the bank of cylinders that contains cylinder #1.

* Be aware that not all online resources list this trouble code. Nonetheless, resources that do list this code use the definition as given above.

One of the principal strategies that make it possible for modern engine management systems to exert precise control over fuel consumption and exhaust emissions involves the use of input data from various sensors in real-time to make appropriate adaptations to injector pulse widths. In simple terms, an injectors’ pulse width is its “ON” time, or put differently, the amount of time it is opened to inject fuel into a cylinder during an injection event.

However, the PCM cannot monitor the ratio of air to fuel directly, and therefore, it obtains input data from the oxygen sensors that measure the level of oxygen in the exhaust stream. In practice, and in a fully functional fuel management system that is in closed-loop operation, the level of oxygen in the exhaust stream is directly proportional to the quality of the air/fuel mixture. Thus, the PCM monitors this parameter continuously via the upstream* (of the catalytic converter) oxygen sensor to maintain the air/fuel mixture in a stoichiometric ratio.

*Note that while the downstream (of the catalytic converter) oxygen sensor on some GM applications are also implicated in fuel control, this implication is limited, and the upstream sensor remains the primary source of input data for short-term fuel control.

As a practical matter, however, oxygen sensors do not start to work directly after a cold engine is started, because their sensing elements need to be at a temperature of about 6000F to generate a signal voltage. While older unheated oxygen sensors relied on the exhaust stream to heat their sensing elements to the required temperature, modern heated wide-band oxygen sensors contain heater elements that are controlled and monitored by the PCM via dedicated control and sensing circuits.

In terms of practicalities, this means that an oxygen sensor that is not at its required operating temperature cannot provide the PCM with input data. This is known as “open-loop” operation, and with unheated sensors, this period could be as long as several minutes, during which time the PCM used pre-programmed fuelling strategies that did not require input data from any engine sensors.

Heated oxygen sensors, on the other hand, typically reach their operating temperatures in less than about 30 seconds, meaning that they can begin to provide the PCM with input data on the composition of the exhaust stream, and by extension, on the quality of the air/fuel mixture, soon after engine start-up. As soon as the PCM begins to receive this data from the upstream oxygen sensor(s), the fuel management system enters a condition known as “closed-loop” operation, which is so-called because this data exchange is configured in a closed loop between the upstream oxygen sensor(s), the PCM, and the greater fuel control system.

However, to reduce exhaust emissions during cold start-ups, the PCM is programmed to expect input data from the upstream oxygen sensor within a predefined and strictly observed time limit. Thus, if any defect, failure, or malfunction occurs anywhere in the fuel control system that causes this time limit to be exceeded, the PCM will recognize that it cannot enter closed-loop operation at least once within the prescribed time limit, and it will set code P1128 and illuminate a warning light as a result.

Note, however, that on some applications, the PCM needs to detect the fault at least twice during two consecutive trips before it will set this code. Note also that when the PCM does not detect the fault in three consecutive trips, it will automatically clear this code and extinguish warning lights.

Where is the P1128 sensor located?

This image shows the location of the upstream oxygen sensors on a 2007 Jeep Liberty application. Note that while these sensors are easily accessible, it may be necessary to remove or disassemble the exhaust system and/or other unrelated components to gain access to the sensors for testing and or replacement on other applications.

Also, be sure to consult reliable service information for the affected application to identify the affected bank of cylinders correctly to avoid a misdiagnosis and the unnecessary replacement of parts.

What are the common causes of code P1128?

The most common causes of code P1128 are many and varied, and could include one or more of the following-

  • Defective or failed upstream oxygen sensor (Most common)
  • Contaminated oxygen sensor sensing element
  • Abnormally high or low fuel pressure
  • Damaged, burnt, shorted, disconnected, or corroded wiring and or connectors that affect the signal, control, feedback, or reference voltage circuits of the affected oxygen sensor, or any other implicated engine sensor
  • Excessive oil consumption or other mechanical defects in the engine
  • Defective, contaminated, or malfunctioning MAP and/or MAF sensors
  • Defective or malfunctioning engine coolant temperature sensor
  • Defective or malfunctioning intake air temperature sensor
  • Failed or failing PCM or fuel control module, but note that since these are rare events, the fault must be sought elsewhere before any control module is replaced or reprogrammed

What are the symptoms of code P1128?

Common symptoms could include one or more of the following, but note that depending on the nature of the problem, the severity of one or more symptoms listed here could vary significantly between applications-

  • Stored trouble code and illuminated warning light
  • Depending on the nature of the problem, multiple additional codes may be present along with P1128
  • Idling quality may be poor, or the idling speed may fluctuate wildly
  • Fuel consumption may increase
  • Varying degrees of power loss may be present
  • The engine may stall unexpectedly or frequently at low engine speeds
  • The engine may stumble or hesitate upon acceleration
  • Spark plugs on the affected bank of cylinders may fail repeatedly if the problem is not resolved promptly
  • Misfires may develop on the affected bank of cylinders if the problem is not resolved promptly
  • Some readiness monitors may not initiate or run to completion
  • The vehicle will fail a mandatory emissions test

Help Us Help You

Please comment below describing your issue as well as the specifics of your vehicle (make, model, year, miles, and engine), and one of our mechanics will respond as soon as possible. For an expedited response within 24 hours, we appreciate a $9.99 donation via the payment button below.